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Abstract
We extend the range of the searchlight problem in radiative transfer to include
internal reflection arising from Fresnel and Lambert processes. For an isotropic
beam and a normal beam, we calculate the albedo, the surface intensity and
the mean distance of travel of a photon in the lateral direction. Numerical and
graphical results are presented for the above quantities.

PACS numbers: 42.25.Dd, 42.25.Fx, 42.30.Wb, 42.60.Ay

1. Introduction

A classic problem in transport theory is that of a pencil beam of radiation (or neutrons) incident
on a half-space at a point on its surface. The seminal work on this problem is due to Elliott
(1952, 1955) who considered the closely related problem of a point source on the surface of a
half-space. There followed the work of Rybicki (1971), Williams (1982), Siewert and Dunn
(1982, 1983), Siewert (1989), Dunn (1985) and Siewert (1982, 1984, 1989). Other relevant
references may be found in Siewert who also deals with a slab rather than a half-space. A
more recent contribution to the literature is Barichello and Siewert (2000). A series of papers,
apparently unknown to those working in neutron transport, was published by Crosbie and co-
workers (Breig and Crosbie 1973, Crosbie 1978, Crosbie and Dougherty 1978, Crosbie 1979,
Crosbie and Dougherty 1988, Crosbie and Shieh 1990, Crosbie and Shieh 1991, Crosbie and
Shieh 1993). This work is of considerable importance and is based upon the integral form of
the transport equation. Many of the results obtained by neutron transport workers are derived
and it appears that the two groups worked quite independently of each other. We shall refer in
more detail to the work of Crosbie et al below.
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The present work is an extension of the paper by the author (Williams 1982) to include
the effect of internal reflection at the surface. Two cases are considered: specular reflection,
governed by the Fresnel laws, and diffuse reflection described by Lambert’s law (Born and
Wolf 1999). Thus we have a mono-directional beam incident on the surface at the origin and
obtain expressions for the albedo, the emergent angular distribution and the surface intensity
for various cases. We also obtain a measure of the mean distance of travel in the lateral
direction. The procedure we adopt is based on infinite Fourier transforms in the lateral (x–y)
directions, a Laplace transform in the normal (z) direction and the principle of superposition.
Various schemes are used for inverting the transforms and for obtaining asymptotic estimates.
There are some practical uses of the work to be described; namely, to understand better
the transport of radiation in tissue in connection with optical tomography in the infra-red
region, the dispersal of a laser beam in a medium and the emissive power of an industrial
surface subjected to a localized radiative heat source. In addition, we can examine the effect
of different types of surface, e.g. specular or diffuse, on the albedo and spatial intensity of
radiation in an optical medium.

2. General theory

We denote the angular radiation intensity (neutrons or radiation) by the symbol I (x, y, z, µ, ϕ),
where µ = cos ϑ and ϕ denote the direction of motion of the photon or neutron with respect
to the x, y, z axes (Williams 1971). Thus with isotropic scattering, we may write the transport
equation as(

µ
∂

∂z
+

√
1 − µ2

{
cos ϕ

∂

∂x
+ sin ϕ

∂

∂y

}
+ 1

)
I (x, y, z, µ, ϕ)

= c

4π

∫ 2π

0
dϕ′

∫ 1

−1
dµ′I (x, y, z, µ′, ϕ′) ≡ c

4π
I0(x, y, z) (1)

where I0(x, y, z) is the scalar intensity, c = �s/(�s + �a) and distance is measured in units
of the mean free path. �s and �a are the macroscopic scattering and absorption cross sections,
respectively, defined by �s = Nsσs and �a = Naσa , where Ns and Na are the number densities
of the scatterers and absorbers and σs and σa the microscopic cross sections. Associated with
equation (1) is the boundary condition, which we may write as follows for specular reflection

I (x, y, 0, µ, ϕ) = R(µ)I (x, y, 0,−µ, ϕ) + δ(µ − µ0)δ(ϕ − ϕ0)δ(x)δ(y) (2)

where R(µ) is the Fresnel reflection coefficient.
For Lambert’s law of reflection, we have

I (x, y, 0, µ, ϕ) = Rd(µ)

π

∫ 2π

0
dϕ′

∫ 1

0
dµ′µ′I (x, y, 0,−µ′, ϕ′)

+ δ(µ − µ0)δ(ϕ − ϕ0)δ(x)δ(y) (3)

and in both cases 0 < µ < 1, 0 < ϕ < 2π . In equation (3) Rd(µ) is the fraction of radiation
reflected internally. In what follows Rd(µ) will be assumed to be independent of µ. The delta
functions in (2) and (3) denote the mono-directional nature of the beam and the fact that it
strikes the surface at x = 0 and y = 0. It is of passing interest to note that Elliott’s (1952,
1955) point source representation is equivalent to an incident source of the form

I (x, y, 0, µ, ϕ) = S0

2µ
δ(x)δ(y).

If we define the infinite medium Fourier transform in the x and y directions, we find(
µ

∂

∂z
+ i

√
1 − µ2{k1 cos ϕ + k2 sin ϕ} + 1

)
Ī (k1, k2, z, µ, ϕ) = c

4π
Ī 0(k1, k2, z) (4)
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where

Ī (k1, k2, z, µ, ϕ) =
∫ ∞

−∞
dx e−ik1x

∫ ∞

−∞
dy e−ik2yI (x, y, z, µ, ϕ). (5)

The associated boundary conditions (2) and (3) become

Ī (k1, k2, 0, µ, ϕ) = R(µ)Ī (k1, k2, 0,−µ, ϕ) + δ(µ − µ0)δ(ϕ − ϕ0) (6)

Ī (k1, k2, 0, µ, ϕ) = Rd(µ)

π

∫ 2π

0
dϕ′

∫ 1

0
dµ′µ′Ī (k1, k2, 0,−µ′, ϕ′) + δ(µ − µ0)δ(ϕ − ϕ0).

(7)

Now in Williams (1982) we showed, by using the Wiener–Hopf technique (Williams 1971)
that the solution of equation (4) at the surface z = 0, subject to the boundary condition where
R(µ) = Rd = 0, i.e. no internal reflection, is given by

Ī (k1, k2, 0,−µ, ϕ) = c

4π

µ0H
(

µ0

1+if0

)
H

(
µ

1+if

)
µ0(1 + if ) + µ(1 + if0)

(8)

where f =
√

1 − µ2(k1 cos ϕ + k2 sin ϕ) and f0 is the same but with µ = µ0, ϕ = ϕ0. The
function H(1/p) in equation (8), is a generalization of the Chandrasekhar H-function, details
of which are given in appendix A.

If we now write the new boundary conditions (6) and (7) with reflection in the form

Ī (k1, k2, 0, µ, ϕ) = �(k1, k2, µ, ϕ) + δ(µ − µ0)δ(ϕ − ϕ0) (9)

then by the principle of superposition (Williams 2006), we may write the general solution for
this new boundary condition as

Ī (k1, k2, 0,−µ, ϕ) = c

4π
H

(
µ

1 + if

){
µ0H

(
µ0

1+if0

)
µ0(1 + if ) + µ(1 + if0)

+
∫ 2π

0
dϕ′

∫ 1

0
dµ′µ′�(k1, k2, µ

′, ϕ′)
H

(
µ′

1+if ′
)

µ′(1 + if ) + µ(1 + if ′)

}
. (10)

The arguments behind this principle of superposition are given in appendix C.
For specular reflection,

�(k1, k2, µ, ϕ) = R(µ)Ī (k1, k2, 0,−µ, ϕ) (11a)

and for Lambert’s law

�(k1, k2, µ, ϕ) = Rd

π

∫ 2π

0
dϕ′

∫ 1

−1
dµ′µ′Ī

(
k1, k2, 0,−µ′, ϕ′). (11b)

In the case of (11b), equation (10) may be solved explicitly for Ī (. . .) as we will show below.
However, for specular reflection, (11a), we must solve a Fredholm integral equation. There
are strong similarities between equations (10) and (14) in Crosbie and Dougherty (1988),
although our equation also applies to the Lambert law. In addition, Crosbie and Dougherty do
not have an explicit analytical expression for the generalized H-function H(µ/(1 + if )) and
also consider only the case of normal incidence for which f = 0 and is therefore less general.

We also showed in Williams (1982) that the surface scalar intensity Ī 0(k1, k2, 0) may be
written as

Ī 0(k1, k2, 0) = H

(
µ0

1 + if0

)
. (12)
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From superposition this becomes

Ī 0(k1, k2, 0) = H

(
µ0

1 + if0

)
+

∫ 2π

0
dϕ

∫ 1

0
dµ�(k1, k2, µ, ϕ)H

(
µ

1 + if

)
. (13)

The inverse Fourier transform of (10) can only be obtained explicitly in certain circumstances
and we shall discuss this matter below.

3. Special cases of the solution

3.1. Specular reflection

The specular case is the most difficult one as it leads to an integral equation. We shall consider
that case first and obtain some parameters of interest. Let us note, however, that for Fresnel
reflection, refraction takes place for radiation as the wave passes through the surface and
Snell’s law describes this effect (Born and Wolf 1999). We have defined the incident beam
as mono-directional, but it could be of the general form ψ(µ, ϕ). In this case, and bearing in
mind the refraction, the actual source entering the medium will be (Williams 2006)

q(µ, ϕ) = n2(1 − R(µ))ψ(
√

1 − n2(1 − µ2), ϕ) (14)

where n is the refractive index of the medium. If ψ(µ, ϕ) is mono-directional as defined in
the boundary conditions, such that ψ(µ, ϕ) = δ(µ − µ∗)δ(ϕ − ϕ∗)then

q(µ, ϕ) = (1 − R(µ̄∗))
µ∗

µ̄∗ δ(µ − µ̄∗)δ(ϕ − ϕ∗) (15)

with µ̄∗ = (1 − (1 − µ∗2)/n2)1/2. Thus the actual solution is given by weighting
equation (10) with q(µ, ϕ) in the form∫ 2π

0
dϕ0

∫ 1

−1
dµ0q(µ0, ϕ0)Ī (k1, k2, 0,−µ, ϕ) (16)

where the variables (µ0, ϕ0) are implicit in Ī (. . .). We will use this representation later.
Crosbie and Dougherty (1988) have also employed this type of source term but only for
normal incidence in which µ∗ = 1.

Before dealing with the general case, we note that for R = 0, we can reduce the expressions
for the surface flux and current to convenient forms for numerical evaluation. Now in Williams
(1982), we showed that certain integrals over (µ, ϕ) could be reduced, under particular
circumstances, to a simpler form, i.e.

1

2π

∫ 2π

0
dϕ

∫ 1

−1
dµG

(
µ

1 + if

)
=

∫ 1

0
dwG

(
w√

1 + k2w2

)
(17)

where k2 = k2
1 + k2

2. This is a useful reduction and applying it to equation (12) we find for an
isotropic beam (i.e. averaged over all possible µ0 and ϕ0)

Ī 0(k, 0) = 2π

∫ 1

0
dwH

(
w√

1 + k2w2

)
(18)

and from equation (8), the net outward current is

J̄ (k, 0) = πc

∫ 1

0
dww̄H(w̄)

∫ 1

0
dw0

w̄0H(w̄0)

w̄ + w̄0
(19)

where w̄ = w/
√

1 + k2w2 and w̄0 = w0/
√

1 + k2w2
0. Unfortunately, the pseudo-H function

H(w̄) does not satisfy any convenient equations which enable (19) to be simplified as in the
case for k = 0.
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We still need to invert the Fourier transform, but because of symmetry we note that the
surface intensity and current depend only on the radial direction ρ =

√
x2 + y2. Thus we find

I0(ρ, 0) =
∫ ∞

0
dkkJ0(kρ)

∫ 1

0
dwH(w̄) (20)

with a similar expression for the current J (ρ, 0). In equation (20) J0(x) is a Bessel function.
The albedo is defined as α(ρ) = J (ρ, 0)/π . These expressions will be evaluated numerically
in a later section. It is useful, however, to evaluate the asymptotic forms of I0(ρ, 0) and
J (ρ, 0). We may do this by expanding H(w̄) in terms of k. Only the case c = 1, i.e. no
absorption, will be considered.

As we can see from appendix A, H(w̄) = H0(w)(1 − kw) + O(k2), where H0 is the
conventional Chandrasekhar H-function in which k = 0. Using this in equation (19) and
expanding to O(k), we find

J̄ (k, 0) = 1
2

(
1 − kh2

1

)
+ O(k2) (21)

where

hn =
∫ 1

0
dwwnH0(w). (22)

Also

Ī 0(k, 0) = h0 − kh1 + O(k2). (23)

Using the inversion formula and h0 = 2, h1 = 2/
√

3, we find

J (ρ, 0) ∼ 2

3ρ3
(24)

and

I0(ρ, 0) ∼ 2√
3ρ3

(25)

from which we have the classic relation I0(ρ, 0) ∼ √
3J (ρ, 0) (Elliott 1952).

Of course for the case of specific values of µ0 and ϕ0, the above results are not so simple
since then the intensity and current will depend on the azimuthal angular coordinate � about
the z-axis as well as ρ, i.e., we must seek I0(ρ,�, 0). This is difficult to evaluate numerically
as it contains H-functions with complex arguments.

Another quantity of physical interest is the mean distance of travel in the x-direction, i.e.

〈x(µ0, ϕ0)〉 =
∫ ∞
−∞ dy

∫ ∞
−∞ dxxI0(x, y, 0)∫ ∞

−∞ dy
∫ ∞
−∞ dxI0(x, y, 0)

. (26)

This can be evaluated directly in terms of the Fourier transform, namely:

〈x(µ0, ϕ0)〉 = i

Ī 0(0, 0, 0)

∂

∂k1
Ī 0(k1, 0, 0)

∣∣∣∣
k1=0

(27)

where Ī 0 is given by equation (13). We shall now demonstrate how to calculate this quantity
for specular reflection. First we must consider equation (10) with � = RĪ , i.e. equation (11a).
Then we expand Ī in powers of k1 and k2 as follows:

Ī (k1, k2, 0,−µ, ϕ) = 1

2π
[Î 0(µ, ϕ) + ik1Î 1(µ, ϕ) + ik2Î 2(µ, ϕ) + · · ·]. (28)

Also we note from appendix A that

µ0H
(
µ̄0

)
H(µ̄)

µ0(1 + if ) + µ(1 + if0)
= µ0H0(µ0)H0(µ)

µ + µ0
[1 − iZ(µ,µ0) (k1 cos ϕ0 + k2 sin ϕ0)

− iZ(µ0, µ)(k1 cos ϕ + k2 sin ϕ) + · · ·] (29)
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where Z is defined in appendix A and µ̄ = µ/(1 + if ). Inserting these expansions into
equation (10) and collecting up coefficients of 1, k1, k2, we find

2Î 0(µ) = G(µ,µ0) +
∫ 1

0
dµ′R(µ′)G(µ,µ′)Î 0(µ

′) (30)

where Î 0(µ) = Î 0(µ, ϕ) is independent of ϕ.

2Î 1(µ, ϕ) = 1

2π

∫ 2π

0
dϕ′

∫ 1

0
dµ′R(µ′)G(µ,µ′)Î 1(µ

′, ϕ′) − G(µ,µ0) [Z(µ,µ0) cos ϕ0

+ Z(µ0, µ) sin ϕ0] − cos ϕ

∫ 1

0
dµ′R(µ′)G(µ,µ′)Z(µ′, µ)Î 0(µ

′) (31)

2Î 2(µ, ϕ) = 1

2π

∫ 2π

0
dϕ′

∫ 1

0
dµ′R(µ′)G(µ,µ′)Î 2(µ

′, ϕ′) − G(µ,µ0) [Z(µ,µ0) sin ϕ0

+ Z(µ0, µ) cos ϕ0] − sin ϕ

∫ 1

0
dµ′R(µ′)G(µ,µ′)Z(µ′, µ)Î 0(µ

′) (32)

with

G(µ,µ′) = µ′H0(µ)H0(µ
′)

µ + µ′ (33)

These are three coupled integral equations for Î 0, Î 1, Î 2. To get Ī 0(k1, k2, 0) in
equation (13), we have

Ī 0(k1, k2, 0) = Î 00 + ik1Î 10 + ik2Î 20 + · · · . (34)

From which, using equation (27),

〈x(µ0, ϕ0)〉 = − Î 10

Î 00
. (35)

Hence from (13)

Î 00 = H0(µ0) +
∫ 1

0
dµR(µ)H0(µ)Î 0(µ) (36)

and

−Î 10 = H0(µ0)

√
1 − µ2

0

[
µ0

1 + µ0
+ µ0
̂(µ0)

]
cos ϕ0 −

∫ 1

0
dµR(µ)H0(µ)I

(0)
1 (µ) (37)

where

Î 1(µ, ϕ) = I
(0)
1 (µ) + I

(1)
1 (µ) cos ϕ (38)

and

2I
(0)
1 (µ) = −G(µ,µ0)Z(µ,µ0) cos ϕ0 +

∫ 1

0
dµ′R(µ′)G(µ,µ′)I (0)

1 (µ′) (39)


̂ is defined in appendix A. So to obtain 〈x〉 we need to evaluate the integral equation (30) for
Î 0(µ) and hence from (36) get Î 00. Then we solve equation (39) and hence from (37) get Î 10.
Using an analogous technique leads to equations for 〈y〉. If we now apply the source operator
(16) to Î 00 and Î 10, we find for ϕ0 = 0

Î 00 = (1 − R̃(µ∗))
µ∗

µ̄∗ H0(µ̄
∗) +

∫ 1

0
dµR(µ)H0(µ)Î 0(µ) (40)
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− Î 10 = (1 − R̃(µ∗))
µ∗

µ̄∗ H0(µ̄
∗)

√
1 − µ̄∗2

[
µ̄∗

1 + µ̄∗ + µ̄∗
̂(µ̄∗)
]

−
∫ 1

0
dµR(µ)H0(µ)I

(0)
1 (µ). (41)

The associated integral equations become

2Î 0(µ) = (1 − R̃(µ∗))
µ∗

µ̄∗ G(µ, µ̄∗) +
∫ 1

0
dµ′R(µ′)G(µ,µ′)Î 0(µ

′) (42)

and

2I
(0)
1 (µ) = −(1 − R̃(µ∗))

µ∗

µ̄∗ G(µ, µ̄∗)Z(µ, µ̄∗) +
∫ 1

0
dµ′R(µ′)G(µ,µ′)I (0)

1 (µ′). (43)

We have set ϕ0 = 0, because it fixes the plane in which the beam lies to be co-incident
with the x-axis. In that case 〈y〉 = 0 because of symmetry in the y-direction. R̃(µ∗) is the
complementary Fresnel coefficient (Born and Wolf 1999). Numerical work will be presented
below.

3.2. Lambert reflection

In this case we choose equation (11b) for �, whence the equation for Ī (k1, k2, 0,−µ, ϕ)

becomes

Ī (k1, k2, 0,−µ, ϕ) = c

4π
H(µ̄)

{
µ0H(µ̄0)

µ0(1 + if ) + µ(1 + if0)

+ RdJ̄ 0

∫ 2π

0
dϕ′

∫ 1

0
dµ′µ′ H(µ̄′)

µ′(1 + if ) + µ(1 + if ′)

}
(44)

where µ̄ = µ/(1 + if ) and

J̄ 0 = 1

π

∫ 2π

0
dϕ

∫ 1

0
dµµĪ(k1, k2, 0,−µ, ϕ). (45)

If now we integrate (44) over all µ(0, 1) and ϕ(0, 2π) and use the special transformation (17),
we find after integrating over µ0 and ϕ0 (assuming isotropic beam source), that

J̄ 0 = cF̄ (k)

1 − cRdF̄ (k)
(46)

where

F̄ (k) =
∫ 1

0
dww̄H(w̄)

∫ 1

0
dw0

w̄0H(w̄0)

w̄ + w̄0
. (47)

In view of the fact that only a fraction 1 − Rd is transmitted through the surface from the
source and a fraction 1 − Rd is re-transmitted from the medium, the Fourier transform of the
albedo can be written as

ᾱ(k) = (1 − Rd)
2J̄ 0 + Rd (48)

where the last term is the fraction directly reflected from the surface not having entered the
medium. The inverse transform is therefore

α(ρ) = (1 − Rd)
2 1

2π

∫ ∞

0
dkkJ0(kρ)

cF̄ (k)

1 − cRdF̄ (k)
+ Rd

δ(ρ)

2πρ
. (49)

The surface intensity for an isotropic incident beam is from equation (13)

Ī 0(k, 0) = 2π

1 − cRdF̄ (k)

∫ 1

0
dwH(w̄) (50)



6414 M M R Williams

whence

I0(ρ, 0) =
∫ ∞

0

dkkJ0(kρ)

1 − cRdF̄ (k)

∫ 1

0
dwH(w̄). (51)

These expressions will be evaluated numerically below, but we do note that for large ρ (small
k) we can write for c = 1,

α(ρ) ∼ 2

3πρ3
(52)

and

I0(ρ, 0) ∼ 2√
3(1 − Rd)ρ3

(
1 +

4Rd√
3(1 − Rd)

)
. (53)

Another case which is relatively easy to handle is when the beam is normal to the surface, i.e.
µ0 = 1. Then we have from (44) the Fourier transform of the albedo as

ᾱ(k) = πJ̄ 0 = (1 − Rd)
2 c

2

H(1)Ḡ(k)

1 − cRdF̄ (k)
+ Rd (54)

where

Ḡ(k) =
∫ 1

0
dw

w̄H(w̄)

1 + w̄
(55)

and from (13)

Ī 0(k, 0) = H(1)

[
1 +

cRdḠ(k)H̄ (k)

1 − cRdF̄ (k)

]
(56)

with

H̄ (k) =
∫ 1

0
dwH(w̄). (57)

Using the same technique as for equations (52) and (53) we find

α(ρ) ∼ 1

2πρ3

[
4

3
Rd +

1√
3
(1 − Rd)H0(1)

]
(58)

and

I0(ρ, 0) ∼ 1

2πρ3

[
4Rd√

3(1 − Rd)
+ H0(1)

{
1 +

4Rd√
3(1 − Rd)

+
16R2

d

(1 − Rd)2

}]
. (59)

We stress that these results apply only for c = 1. We also note that the albedo, α(ρ), is not the
albedo in the normal sense, which we expect to be less than unity; we might call it a localized
albedo. However, for c = 1, it does satisfy the conservation condition

2π

∫ ∞

0
dρρα(ρ) = 1

which may be verified by setting k = 0 in ᾱ(k).

4. Revisiting Williams (1982)

In our earlier work of 1982 (henceforth called W1), we also included a section on the case of a
line source in a half-space along the z-axis. We now wish to take the opportunity of updating
the accuracy of some of the tables and to correct some errors. The result to be evaluated was
the surface intensity in the form

W(ρ, 0) = E0(1 − α)

4πc

∫ ∞

0
dkkJ0(kρ){[1 − (c/k) tan−1 k]−1/2 − 1} (60)
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and also the approximate expression based upon the H1 of Rybicki (1971) which has the form

W(ρ, 0) = E0(1 − α)

4πc

∫ ∞

0
dkkJ0(kρ)

{(
3 + k2

3(1 − c) + k2

)1/2

− 1

}
. (61)

In order to evaluate equation (60), we found it expedient to consider the following Fourier
transform

F(y) =
∫ ∞

−∞
dk eiky{[1 − (c/k) tan−1 k]−1/2 − 1}. (62)

In view of the fact that 1 − (c/k) tan−1 k = 0 has roots at k = ±iν, where 0 � ν < 1, there
are branch points at k = ±iν due to the square root. In addition, there are the usual branch
points at k = ±i due to the singularities of the arctan function. Thus the contour must be
deformed around a cut from iν to i∞ for y > 0. Carrying out the algebra, which is tedious but
straightforward, we find

F(y) = 2
∫ 1

ν

dt e−t |y|[
c
2t

log
(

1+t
1−t

) − 1
]1/2

+
√

2
∫ ∞

1
dt e−t |y|

[
g(c, t)1/2 −

(
1 − c

2t
log

(
t + 1

t − 1

))
g(c, t)

]1/2

(63)

where

1

g(c, t)
=

(
1 − c

2t
log

(
t + 1

t − 1

))2

+
(cπ

2t

)2
. (64)

More concisely, we have

F(y) =
∫ ∞

ν

dtG(t) e−t |y| (65)

where G(t) is defined by the integrand of equation (63). In our earlier work, we omitted the
contribution to G(t) from (1,∞).

From (62) we may write the inverse transform as

[1 − (c/k) tan−1 k]−1/2 − 1 = 1

2π

∫ ∞

−∞
dy e−ikyF (y) = 1

π

∫ ∞

ν

dt tG(t)

t2 + k2
. (66)

In fact the quantity of interest is∫ ∞

0
dkkJ0(kρ){[1 − (c/k) tan−1 k]−1/2 − 1} = 1

π

∫ ∞

ν

dt tG(t)

∫ ∞

0

dkkJ0(kρ)

t2 + k2
. (67)

But the integral over k can be simplified and we find that (67) reduces to
1

π

∫ ∞

ν

dt tG(t)K0(tρ) (68)

where K0(x) is the modified Bessel function. This particular form, containing the K0(x)

function, converges far more rapidly than the left-hand side of equation (67). In order to
correct table 1 in W1, we present table 1 which gives expression (68). The equivalent
expression for the H1 approximation is correct in W1, but the numerical values have been
amended in table 1 and are headed ‘approx’.

In W1, we also calculated 〈x〉, the mean distance of travel of a photon or neutron in the
x-direction. Equation (123) of W1 is correct but the values in table 2 of W1 are not very
accurate. Table 2 gives values correct to 4 significant figures. We also give figure 1 which
illustrates the variation of 〈x〉 with the cosine of the incident angle µ0 and with ϕ0 = 0.
The variation of 〈x(µ0, 0)〉 is of interest since it increases from zero at µ0 = 0, i.e. grazing
incidence, goes through a maximum, and then reduces to zero at µ0 = 1, i.e. normal incidence.
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Table 1. Surface intensity due to line source in a semi-infinite medium. Exact values and those
from an approximate H-function.

c = 1 c = 0.9 c = 0.5

ρ Exact Approx Exact Approx Exact Approx

0.1 9.461 4.600 7.590 3.449 3.548 1.596
0.2 5.239 3.580 3.858 2.538 1.611 1.099
0.3 3.758 2.999 2.570 2.022 0.9763 0.8251
0.4 2.982 2.599 1.907 1.671 0.6662 0.6438
0.5 2.497 2.300 1.499 1.411 0.4850 0.5138
0.6 2.160 2.063 1.221 1.209 0.3679 0.4162
0.7 1.910 1.871 1.019 1.046 0.2871 0.3408
0.8 1.717 1.711 0.8660 0.9131 0.2288 0.2813
0.9 1.562 1.575 0.7457 0.8021 0.1852 0.2336
1.0 1.434 1.458 0.6488 0.7084 0.1518 0.1950
1.5 1.024 1.056 0.3574 0.4028 0.063 43 0.083 26
2.0 0.7980 0.8215 0.2165 0.2437 0.029 82 0.037 49
2.5 0.6534 0.6688 0.1379 0.1534 0.014 95 0.017 42
3.0 0.5524 0.5625 0.090 77 0.099 26 0.007 801 0.008 265
3.5 0.4779 0.4846 0.061 06 0.065 59 0.004 185 0.003 983
4.0 0.4207 0.4252 0.041 75 0.044 05 0.002 291 0.001 943
4.5 0.3754 0.3786 0.028 90 0.030 00 0.001 274 0.000 957
5.0 0.3387 0.3410 0.020 21 0.020 62 0.000 7167 0.000 4750

Table 2. Mean distance of travel in the x-direction as a function of incident beam angle for the
searchlight problem with no internal reflection.

µ0 c = 1 c = 0.9 c = 0.5

0.01 0.028 68 0.021 75 0.010 15
0.05 0.1027 0.072 39 0.031 05
0.1 0.1696 0.1133 0.045 81
0.2 0.2650 0.1638 0.061 06
0.3 0.3292 0.1910 0.067 07
0.4 0.3705 0.2032 0.068 05
0.5 0.3922 0.2044 0.065 76
0.6 0.3949 0.1962 0.061 02
0.7 0.3774 0.1794 0.054 14
0.8 0.3352 0.1528 0.044 90
0.9 0.2551 0.1117 0.032 06
0.95 0.1865 0.080 08 0.022 74
0.97 0.1463 0.062 35 0.017 63
0.99 0.085 53 0.036 18 0.010 19
1.0 0.0 0.0 0.0

This behaviour is expected because at normal incidence 〈x〉 = 0 from symmetry (〈x2〉 is of
course nonzero), and at grazing incidence most of the particles (photons) are near the surface
and leak out preferentially. All the results here are for R = Rd = 0, i.e. no internal reflection.

5. Numerical results and discussion for the searchlight problem

In this section, we will illustrate some of the general results given above numerically. Firstly,
we consider 〈x(µ0, ϕ0)〉 as defined by equation (35) and the associated integral equations (42)
and (43). These integral equations are solved numerically by means of the NAG library routine
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Table 3. Mean distance of travel in the x-direction, x̄(µ0, 0), for different values of the refractive
index n, c = 1.

µ0 n = 1 n = 1.1 n = 4/3

0.0 0.0 0.4680 0.5454
0.1 0.1696 0.4695 0.5434
0.2 0.2650 0.4729 0.5370
0.3 0.3292 0.4751 0.5259
0.4 0.3705 0.4728 0.5090
0.5 0.3922 0.4628 0.4851
0.6 0.3949 0.4421 0.4524
0.7 0.3774 0.4070 0.4077
0.8 0.3352 0.3517 0.3459
0.9 0.2551 0.2621 0.2538
1.0 0.0 0.0 0.0

D05ABF. In this routine, the solution f (x)is expanded as an n-term Chebyshev series in the
form

f (x) = 1

2
c1T1(x) +

n∑
i=2

ciTi(x). (69)

The coefficients ci , for i = 1, 2, . . . , n, of this series are determined directly from approximate
values fi , for i = 1, 2, . . . , n, of the function f (x) at the first n of a set of m + 1 Chebyshev
points

xi = 1
2 [a + b + (b − a) cos([i − 1]π/m)], i = 1, 2, . . . , m + 1 (70)

where b = 1 and a = 0 are the limits on the integral. The values fi are obtained by solving a
set of simultaneous linear algebraic equations formed by applying a quadrature formula to the
integral at each of the above points (Clenshaw and Curtis 1960).

Figure 2 shows the variation of 〈x(µ0, ϕ0)〉 for four cases. If the refractive index n = 1,
we have the result given in W1 which is the same as the c = 1 case in figure 1 but evaluated
by using an entirely different method. More important is the case when n > 1 and we have
specular-Fresnel reflection; the results shown are very different. For example, for n = 1,
〈x(µ0, ϕ0)〉 has a maximum and is zero at µ0 = 0, 1. For n > 1, however, we find that
〈x(µ0, ϕ0)〉 is finite at µ0 = 0, i.e. grazing incidence, and zero at normal incidence. The
reason for this behaviour is that at grazing incidence, due to refraction, the incident beam
enters the medium at an angle ϑc = sin−1(1/n) and can therefore travel some distance in the
x-direction before photons leak out. For n > 4/3, the maximum appears to be at µ0 = 0.
Table 3 gives some representative values of 〈x(µ0, ϕ0)〉 for n = 1, 1.1 and 4/3. Figure 2
shows that the maximum in 〈x(µ0, ϕ0)〉 moves to lower values of µ0 as n increases, but for
n > 1 the value at µ0 = 0 is always greater than zero, as we expect on the basis of the argument
given above concerning refraction.

We now consider the values of the albedo α(ρ) and surface intensity I0(ρ, 0) for the
point isotropic and normal beam sources. This will be done for the case of Lambert internal
reflection as described in section 3.2. All values are for c = 1, although c < 1 poses no
problem numerically. For convenience we plot A0ρ

3α(ρ) and A1ρ
3I0(ρ, 0) in figures 3 and 4,

respectively. Note that the integrals over the Bessel function J0(x) are evaluated by dividing
the integral into sections covering the distance between the roots of J0(x) = 0. The resulting
terms, which alternate in sign, are summed using the Shanks method (Bender and Orszag
1978) which gives excellent convergence, with not more than ten terms needed unless ρ is
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Figure 1. Mean distance of travel in the x-direction.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

n=1
n=1.01
n=1.1
n=4/3

<x(µ
0
,0)>

µ
0

Figure 2. Mean value of x as a function of the cosine of the incident angle, c = 1.
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Figure 5. Normalized albedo for a normal beam.
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Figure 6. Normalized surface intensity for normal beam.

very small. All results in the figures are normalized such that, as ρ → ∞, the quantity plotted
tends to unity. Tables 4 and 5 show a range of values for the albedo α(ρ) as a function
of ρ and the reflection coefficient Rd for c = 1. Figures 5 and 6 and tables 6 and 7 show



The searchlight problem in radiative transfer with internal reflection 6421

Table 4. Albedo α(ρ) for isotropic beam, c = 1, Lambert law of reflection.

ρ Rd = 0.0 Rd = 0.2 Rd = 0.5 Rd = 0.9

0.5 0.1012 7.075(–2) 3.213(–2) 1.696(–3)
1.0 3.713(–2) 2.722(–2) 1.345(–2) 8.388(–4)
2.0 1.109(–2) 8.689(–3) 4.851(–3) 3.900(–4)
3.0 4.765(–3) 3.919(–3) 2.400(–3) 2.366(–4)
4.0 2.431(–3) 2.077(–3) 1.370(–3) 1.610(–4)
5.0 1.385(–3) 1.219(–3) 8.544(–4) 1.170(–4)
6.0 8.533(–4) 7.695(–4) 5.668(–4) 8.890(–5)
7.0 5.587(–4) 5.125(–4) 3.941(–4) 6.977(–5)
8.0 3.838(–4) 3.573(–4) 2.844(–4) 5.611(–5)
9.0 2.742(–4) 2.582(–4) 2.115(–4) 4.602(–5)

10.0 2.023(–4) 1.922(–4) 1.613(–4) 3.835(–5)

Table 5. Surface intensity I0(ρ, 0) for isotropic beam, c = 1, Lambert law of reflection.

ρ Rd = 0.0 Rd = 0.2 Rd = 0.5 Rd = 0.9

0.5 0.6834 0.8843 1.2686 2.0953
1.0 0.2499 0.3392 0.5295 1.0330
2.0 7.196(–2) 0.1053 0.1874 0.4747
3.0 2.972(–2) 4.617(–2) 9.107(–2) 0.2856
4.0 1.467(–2) 2.392(–2) 5.132(–2) 0.1932
5.0 8.146(–3) 1.379(–2) 3.170(–2) 0.1401
6.0 4.926(–3) 8.591(–3) 2.089(–2) 0.1061
7.0 3.182(–3) 5.677(–3) 1.446(–2) 8.316(–2)
8.0 2.164(–3) 3.931(–3) 1.040(–2) 6.681(–2)
9.0 1.535(–3) 2.827(–3) 7.713(–3) 5.475(–2)

10.0 1.126(–3) 2.097(–3) 5.871(–3) 4.560(–2)

Table 6. Albedo α(ρ) for normal beam, c = 1, Lambert law of reflection.

ρ Rd = 0.0 Rd = 0.2 Rd = 0.5 Rd = 0.9

0.5 8.991(–2) 6.296(–2) 2.869(–2) 1.526(–3)
1.0 3.326(–2) 2.443(–2) 1.212(–2) 7.631(–4)
2.0 1.047(–2) 8.187(–3) 4.557(–3) 3.663(–4)
3.0 4.743(–3) 3.866(–3) 2.337(–3) 2.274(–4)
4.0 2.528(–3) 2.126(–3) 1.372(–3) 1.570(–4)
5.0 1.491(–3) 1.284(–3) 8.736(–4) 1.153(–4)
6.0 9.449(–4) 8.294(–4) 5.892(–4) 8.828(–5)
7.0 6.324(–4) 5.635(–4) 4.150(–4) 6.966(–5)
8.0 4.422(–4) 3.986(–4) 3.026(–4) 5.626(–5)
9.0 3.203(–4) 2.915(–4) 2.270(–4) 4.629(–5)

10.0 2.390(–4) 2.193(–4) 1.743(–4) 3.867(–5)

similar quantities for a normal beam for the same ranges of ρ and Rd . Both albedo and
surface intensity have a similar asymptotic behaviour. We note, however, that as the internal
reflection coefficient Rd increases, the rate at which the asymptotic behaviour is approached
decreases markedly. Indeed for Rd = 0.9, the asymptotic behaviour is not achieved until ρ

is many hundreds of mean free paths. However, we may see from the tables that as the value
of Rdapproaches unity, the albedo and the surface intensity become less dependent on ρ. For
example, in table 4, for Rd = 0, the ratio α(0.5)/α(10.0) ≈ 500, whereas for Rd = 0.9, the
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Table 7. Surface intensity I0(ρ, 0) for normal beam, c = 1, Lambert law of reflection.

ρ Rd = 0.0 Rd = 0.2 Rd = 0.5 Rd = 0.9

0.5 0.1807 0.2381 0.3481 0.5875
1.0 6.880(–2) 9.448(–2) 0.1494 0.2967
2.0 2.118(–2) 3.113(–2) 5.557(–2) 0.1414
3.0 9.252(–3) 1.433(–2) 2.806(–2) 8.717(–2)
4.0 4.788(–3) 7.723(–3) 1.628(–2) 5.992(–2)
5.0 2.761(–3) 4.596(–3) 1.035(–2) 4.387(–2)
6.0 1.722(–3) 2.936(–3) 6.899(–3) 3.353(–2)
7.0 1.140(–3) 1.979(–3) 4.838(–3) 2.642(–2)
8.0 7.903(–4) 1.393(–3) 3.517(–3) 2.132(–2)
9.0 5.691(–4) 1.014(–3) 2.632(–3) 1.753(–2)

10.0 4.227(–4) 7.599(–4) 2.018(–3) 1.463(–2)

ratio is 44 and for Rd = 0.999 it is 17. So internal reflection allows the intensity more time to
smooth itself out spatially; a not unexpected result physically.

6. Conclusions

We have shown how, by using the principle of superposition, the problem of internal reflection
by any law, specular or diffuse or indeed a linear combination of these, can be used to formulate
an equation for the emergent angular distribution of radiation from a surface (the directional
emissive power) and the surface scalar intensity. Measures of the way in which the radiation
intensity behaves when a beam of arbitrary direction impinges on the surface are obtained via
the local albedo and the mean distance of travel over the surface. Asymptotic estimates are
also obtained for the scalar intensity in inverse powers of distance for the non-absorbing case.
We have also developed a very efficient numerical procedure for inverting a Fourier–Bessel
transform using the Shanks summation formula. For the case of diffuse Lambert reflection, a
complete solution is available for normal and isotropically incident beams. Numerical results
for the case of the arbitrary beam, which involves a generalized H-function with complex
argument, will be presented in a subsequent paper. It should be added that problems of the
type described here can also be solved using the Monte Carlo method and by the finite-element
method, as well as other essentially numerical approaches, in far greater generality. However,
an analytic solution offers a useful benchmark against which to compare the convergence of
these other methods.

Appendix A. Generalized H-functions

As we have shown in W1, the explicit form for H(1/p) can be written as

H

(
1

p

)
= p +

√
1 + k2

p +
√

ν2 + k2
exp

(
1

π

∫ 1

0

dw tan−1 �(w)

w
√

1 + k2w2
(
wp +

√
1 + k2w2

)
)

(A.1)

where

�(w) = πcw/2

1 − cw
2 log

(
1+w
1−w

) . (A.2)
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For numerical purposes, it is convenient to write this as

tan−1 �(w) = π

2
− tan−1

[
2

cπw
− 1

π
log

(
1 + w

1 − w

)]
. (A.3)

Alternatively, using a different contour (Williams 1971) one can write

H

(
1

p

)
= p +

√
1 + k2

p +
√

ν2 + k2
exp

(
−p

π

∫ ∞

0

dt

t2 + p2
log 
(t, k)

)
(A.4)

where


(t, k) = t2 + k2 + 1

t2 + k2 + ν2

(
1 − c

tan−1
√

t2 + k2

√
t2 + k2

)
(A.5)

and ν is the root of

1 − c

2ν
log

(
1 + ν

1 − ν

)
= 0. (A.6)

A few useful results from the above are

H(0) = 1 (A.7)
1

H(∞)
=

(
1 − c

k
tan−1 k

)1/2
. (A.8)

For small values of k and c = 1, we may write

H(w̄) = H0(w)(1 − kw + O(k2)) (A.9)

where H0 is the classic H-function.
A further useful expansion for c = 1, derived by Elliott (1952) and which we have verified,

is

log H(1/p) = log

[
p +

√
1 + k2

p + k

]
− p

π

∫ ∞

0

dt log 
(t, 0)

t2 + p2
+ (1 − z0)

k2

2p
+ O(k4) (A.10)

where z0 = 0.710 446 09 . . . . We may also write

log

[
p +

√
1 + k2

p + k

]
= log

(
1 +

1

p

)
− k

p
+

1

2

(
1

p2
+

1

1 + p

)
k2 + O(k3). (A.11)

If we expand H(µ̄), µ̄ = µ/(1 + if ), in powers of k1 and k2, we find from A4 that

H(µ̄) = H0(µ) {1 + iA(µ) {k1 cos ϕ + k2 sin ϕ} + · · ·} (A.12)

where

A(µ) = −µ
√

1 − µ2

[
1

1 + µ
+ 
̂(µ)

]
(A.13)

where


̂(µ) = 2

π

∫ ∞

0

dt t2K(t)

1 + µ2t2
(A.14)

with

K(t) = t2 tan−1 t − 3(t − tan−1 t)

2t2(1 + t2)(t − tan−1 t)
. (A.15)

Then
µ0H(µ̄0)H(µ̄)

µ0(1 + if ) + µ(1 + if0)
= µ0H(µ0)H(µ)

µ0 + µ
[1 − iZ(µ,µ0)(k1 cos ϕ0 + k2 sin ϕ0)

− iZ(µ0, µ)(k1 cos ϕ + k2 sin ϕ) + · · ·] (A.16)

where

Z(µ,µ0) =
√

1 − µ2
0

[
µ0

1 + µ0
+

µ

µ + µ0
+ µ0
̂(µ0)

]
. (A.17)
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Appendix B. Integral equation for the generalized H-function

By using the Wiener–Hopf procedure, we can deduce integral equations which relate the
generalized H-functions discussed in appendix A. For example if z and p are complex numbers,
we have

1

H
(

1
z

) − 1

H
(

1
p

) = c

4π
(z − p)

∫ 2π

0
dϕ

∫ 1

0
dµ

µ̄H(µ̄)

(1 + zµ̄) (1 + if + pµ)
(B.1)

where µ̄ = µ/(1 + if ), with f =
√

1 − µ2(k1 cos ϕ + k2 sin ϕ). Equation (B.1) may be
transformed to

1

H(w̄)
− 1

H(w̄0)
= c

2
(w̄0 − w̄)

∫ 1

0
dw′ w̄′H(w̄′)

(1 + k2w′2)(w̄0 + w̄′)(w̄ + w̄′)
(B.2)

where w̄ = w/
√

1 + k2w2. Unfortunately, these equations do not help to simplify expressions
such as equation (47) or (50) as would be the case if k = 0. These equations were derived by
Williams (1982) but are given again here for completeness. Equation (B.2) has been verified
numerically using (A.1) for H(w) and by transformation agrees with a result of Crosbie and
Linsenbardt (1978).

Appendix C. The principle of superposition

In order to obtain equation ((10) we used a principle of superposition. The approach is
briefly described here. Consider the problem which we solved in W1, which was that of
the intensity arising from a pencil beam on the surface. Suppose that we have a solution,
G(µ, ϕ;µ0, ϕ0)(µ < 0, 0 < ϕ < 2π), for the pencil beam problem, where G is the solution
of the searchlight problem for the following boundary condition,

G(µ, ϕ;µ0, ϕ0) = δ(µ − µ0)δ(ϕ − ϕ0), µ > 0, 0 < ϕ < 2π. (C.1)

We may regard G(µ, ϕ;µ0, ϕ0) as the Green function and its form is given by equation (8) of
the text. Now suppose we have a more general boundary condition of the form

Ī (k1, k2, 0, µ, ϕ) = �(k1, k2, µ, ϕ) + δ(µ − µ0)δ(ϕ − ϕ0), µ > 0, 0 < ϕ < 2π.

(C.2)

Then we have, by superposition, or by using the Green function principle

Ī (k1, k2, 0,−µ, ϕ) =
∫ 1

0
dµ′

∫ 2π

0
dϕ′G(−µ, ϕ;µ′, ϕ′)

× [�(k1, k2, µ
′, ϕ′) + δ(µ′ − µ0)δ(ϕ

′ − ϕ0)] (C.3)

or more simply

Ī (k1, k2, 0,−µ, ϕ) = G(−µ, ϕ;µ0, ϕ0) +
∫ 1

0
dµ′

∫ 2π

0
dϕ′G(−µ, ϕ;µ′, ϕ′)�(k1, k2, µ

′, ϕ′)
(C.4)

which is equivalent to equation (10).
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